Potensi Antioksidan Buah Naga Merah (Hylocereus polyrhizus) Kering dengan Pre-Treatment
(Antioxidant Potential of Dried Red Dragon Fruit (Hylocereus polyrhizus) with Pre-Treatment)
Potensi Antioksidan Buah Naga Merah (Hylocereus polyrhizus) Kering dengan Pre-Treatment
(Antioxidant Potential of Dried Red Dragon Fruit (Hylocereus polyrhizus) with Pre-Treatment)
Gusti Ayu Kadek Diah Puspawati
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
Putu Timur Ina
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
Gusti Ayu Ekawati
Program Studi Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana, Indonesia
DOI: https://doi.org/10.19184/j-agt.v16i02.27927
ABSTRACT
Red dragon fruit has the potential as a functional food because it contains bioactive compounds that provide health benefits. Dried fruit is a simple processing fruit method and does not change the shape of the fresh fruit much, but during the drying process, the bioactive compounds are easily damaged by heat. It is necessary to give pre-treatment before drying. The study aimed to determine the antioxidant capacity, total phenolic, total flavonoid, betacyanin levels, and sensory preference of dried red dragon fruit with pre-treatments. The six levels of pre-treatments were without pre-treatment/control (K0), steam blanching (70ºC) for 10 minutes (K1), soaking in cold citric acid (3%) for 10 minutes (K2), soaking in cold citric acid (3%) for 3 minutes, then steam blanching at 70ºC for 7 minutes (K3), soaking in cold salt (5%) for 10 minutes (K4), and soaking in cold salt (5%) for 3 minutes, steam blanching at 70ºC for 7 minutes (K5), then dried it at 50ºC for 18 hours. The results showed that the control (K0) had the highest total phenolic content (20.10 mg GAE/g), total flavonoid content (5.92 mg QE/g), betacyanin content (1.57 mg/g), antioxidant capacity (1.72 mg GAEAC/g), and organoleptic preference like of color (5.65), rather like of odor (5.00), like of texture (5.69), like of taste (5.92), and like of overall acceptance (5.92). Based on sensory (organoleptic) acceptance, the steam blanching (70ºC, 10 minutes) (K1) of dried red dragon fruit had the highest preference: like of color (6.08), like of texture (5.85), like of taste (6.23), and like of overall acceptance (6.23), but rather like of odor (5.31). Meanwhile, KI had 16.71 mg GAE/g of total phenolics, 4.98 mg QE/g of total flavonoids, 0.87 mg/g of betacyanin levels, and 1.48 mg GAEAC/g of antioxidant capacity. Dried red dragon fruit (especially with steam blanching) has the potential as a functional food ingredient because the pre-treatment maintains its bioactive content during drying.
Keywords: dried red dragon fruit, functional food ingredients, pre-treatment
REFERENCES
Angonese, M., Motta, G.E., Silva de Farias, N., Molognoni, L., Daguer, H., Brugnerotto, P., de Oliveira Costa, A.C., & Olivera Müller, C.M. (2021). Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. LWT-Food Science and Technology, 149, 1–9. https://doi.org/10.1016/j.lwt.2021.111924
Arivalagan, M., Karunakaran, G., Roy, T.K., Dinsha, M., Sindhu, B.C., Shilpashree, V.M., Satisha, G.C., & Shivashankara, K.S. (2021). Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry, 353, 1–11. https://doi.org/10.1016/j.foodchem.2021.129426
Asgar, A., & Musaddad, D. (2008). Pengaruh media, suhu, dan lama blansing sebelum pengeringan terhadap mutu lobak kering. Jurnal Hortikultura, 18(1), 87–94.
Chen, Z., Zhong, B., Barrow, C.J., Dunshea, F.R., & Suleria, H.A.R. (2021). Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential. Arabian Journal of Chemistry, 14(6), 103–151. https://doi.org/10.1016/j.arabjc.2021.103151
Fajarwati, N.H., Parnanto, N.H.R., & Manuhara, G.J. (2017). Pengaruh konsentrasi asam sitrat dan suhu pengeringan terhadap karakteristik fisik, kimia, sensoris manisan kering labu siam (Sechium edule Sw.) dengan pemanfaatan pewarna alami dari ekstrak rosela ungu (Hibiscus sabdariffa L). Jurnal Teknologi Hasil Pertanian, 10(1), 50–66. https://doi.org/10.20961/jthp.v10i1.17494
Fakhrizal, Fauzi, R., & Ristianingsih, Y. (2015). Pengaruh konsentrasi pelarut HCl pada ekstraksi pektin dari kulit pisang ambon. Konversi, 4(2), 1–11. DOI: 10.20527/k.v4i2.264
Galoburda, R., Kruma, Z., & Ruse, K. (2012). Effect of pretreatment Method on the content of phenolic compounds, vitamin C, and antioxidant activity of dried dill. International Journal of Nutrition and Food Engineering, 64(4), 1075–1079.
Garba, U., & Kaur, S. (2014). Effect of drying and pretreatment on anthocyanins, flavenoids and ascorbic acid content of black carrot (Daucus carrota L.). Journal of Global Biosciences, 3(4), 772–777.
Halimfenezi, L., Rusdi, & Asra, R. (2017). A Review: Analysis of betacyanin levels in various natural products. Asian Journal of Pharmaceutical Research and Development, 5(2), 1–8. https://doi.org/10.22270/ajprd.v8i5.846
Huyen, C.T.T., Hung, B.B., & Hang, L.T.T. (2018). Experiment and evaluation the properties of dragon fruit drying with thickness of 30mm. The Intern Jounarl of Engineering Science, 7(2), 67–71. https://doi.org/10.9790/1813-0707026771
Ina, P.T., & Ekawati, G.A. (2020). 'Pengembangan Buah Naga Merah Kering sebagai Ingredien Pangan Fungsional'. Laporan Penelitian Fakultas Teknologi Pertanian Universitas Udayana, Badung
Jaafar, R.A., Rahman, A.R.B.A., Mahmod, N.Z.C., & Vasudevan, R. (2009). Proximate analysis of dragon fruit (Hylecereus polyhizus). American J Appl Sci, 6(7), 1341–1346.
Khuriyati, N., Fibriato, M.B., & Nugroho, D.A. (2018). Penentuan kualitas buah naga (Hylocereus undatus) dengan metode non-destruktif. Jurnal Teknologi & Industri Hasil Pertanian, 23(2), 65. https://doi.org/10.23960/jtihp.v23i2.65-74
Luu, T.T.H., Le, T.L., Huynh, N., & Quintela-Alonso, P. (2021). Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech Journal of Food Sciences, 39(2), 71–94. https://doi.org/10.17221/139/2020-CJFS
Mahattanatawee, K., Manthey, J.A., Luzio, G., Talcott, S.T., Goodner, K., & Baldwin, E.A. (2006). Total antioxidant activity and fiber content of select Florida-grown tropical fruits. Journal of Agricultural and Food Chemistry, 54(19), 7355–7363. https://doi.org/10.1021/jf060566s
Mahayothee, B., Komonsing, N., Khuwijitjaru, P., Nagle, M., & Müller, J. (2019). Influence of drying conditions on colour, betacyanin content and antioxidant capacities in dried red-fleshed dragon fruit (Hylocereus polyrhizus). International Journal of Food Science and Technology, 54(2), 460–470. https://doi.org/10.1111/ijfs.13958
Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2016). Recent advances in conventional drying of foods. Journal of Food Technology and Preservation, 1(1), 25–34.
Meilgard, M., Civille, G.V., & Carr, B.T. (2006). Sensory Evaluation Techniques. USA: CRC Press.
Morais, R.M.S.C., Morais, A.M.M.B., Dammak, I., Bonilla, J., Sobral, P.J.A., Laguerre, J.C., Afonso, M.J., & Ramalhosa, E.C.D. (2018). Functional dehydrated foods for health preservation. Journal of Food Quality, 2018, 1–29. https://doi.org/10.1155/2018/1739636
Parwata, I.M.O. (2016). Kimia organik bahan alam flavonoid. Diktat / Bahan Ajar, 1–51. (https://simdos.unud.ac.id/uploads/file_pendidikan_1_dir/c0c585d54a388056ea08899533164330.pdf) [Diakses 26 Desember 2021].
Puspawati, G.A.K.D. (2020). Potensi antosianin terong belanda (Solanum betaceum Cav.) Sebagai penuruan hiperglikemik. In book chapter: Invosi teknologi pertanian untuk menunjang agroindustri di masa pandemi. Fakultas Teknologi Pertanian Universitas Udayana, Bali. Swastanulus, Denpasar ( pp. 70–91)
Puspawati, G.A.K.D., Marsono, Y., Armunanto, R., & Supriyadi. (2018). Inhibitory potency of Indonesian tamarillo (Solanum betaceum Cav.) crude extract against α-glucosidase enzyme activity. Journal of Current Research in Nutrition and Food Science, 06(2), 392–403. https://dx.doi.org/10.12944/CRNFSJ.6.2.14
Puspawati, G.A.K.D., Marsono, Y., & Supriyadi. (2020). Decreasing of oxidative stress of red tamarillo (Solanum Betaceum Cav.) extract in STZ-NA-induced diabetic rats. The 16th ASEANFood Conference:" Outlook and Opportunities of Food Technology and Culinary for Tourism Industry", pp. 173–180. https://doi.org/10.5220/0010016601730180
Rahayuningsih, E., Setiawan, F.A., Rahman, A. B.K., Siahaan, T., & Petrus, H.T.B.M. (2020). Microencapsulation of betacyanin from red dragon fruit (Hylocereus polyrhizus) peels using pectin by simple coacervation to enhance stability. Journal of Food Science and Technology, 58(9), 3379–3387. https://doi.org/10.1007/s13197-020-04910-8
Ruvini, L., Wmmmk, D., Chathuni, J., Rizliya, V., Swarna, W., & Cj, B. (2017). Effect of different drying methods on antioxidant activity of star fruits (Averrhoa carambola L.). J. Nutrition Diet Supplements, 1(1), 1–6.
Setiawati, V.R., Purwoko, A.A., & Hadisaputra, S. (2018). Conversion of anthocyanin from dragon fruit (Hylocereus costaricencis) to metal complexes: Prospects for sensitizer in solar cells. IOSR Journal of Applied Chemistry, 11(6), 52–58. https://doi.org/10.9790/5736-1106015258
Sutisna, A., & Humaedi, D. (2016). Perbandingan pengaruh ekstrak buah naga putih (Hylocereus undatus) dengan buah naga merah (Hylocereus polyrhizus) terhadap kolesterol total, LDL, dan HDL tikus putih (Rattus norvergicus) hiperlipidemia. Tunas Medika Jurnal Kedokteran & Kesehatan, 3(4), 1–8.
Published
20-12-2022
Issue
Vol. 16 No. 2 2022: Jurnal Agroteknologi
Pages
148-162
License
Copyright (c) 2022 Jurnal Agroteknologi
How to Cite
Puspawati, G.A.K.D., Ina, P.T., & Ekawati, G.A. (2022). Potensi antioksidan buah naga merah (Hylocereus polyrhizus) kering dengan pre-treatment. Jurnal Agroteknologi, 16(2), 148-162. https://doi.org/10.19184/j-agt.v16i02.27927